The contraction method 00000

Reducible trees

A Contraction Method to Decide MSO Theories of Trees

Gabriele Puppis

Departement of Mathematics and Computer Science University of Udine, Italy gabriele.puppis@dimi.uniud.it

Verona 2007

Introduction
0000000000

Reducible trees

What is the talk about?

An **automaton-based** approach to solve **model-checking problems** for **monadic second-order logics** over (a large class of) **trees**.

Introduction
0000000000

Reducible trees

What is the talk about?

An **automaton-based** approach to solve **model-checking problems** for **monadic second-order logics** over (a large class of) **trees**.

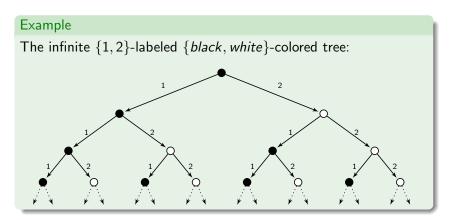
We shall briefly explain what we mean by

- tree
- monadic second-order (MSO) logic
- model-checking problem
- automaton-based approach.

Introduction	The contraction method	Reducible trees	Conclusions
00000000			

We shall consider possibly infinite (rooted unranked) trees where

- each vertex is associated a **color** (e.g., black, white)
- each edge is associated a label (e.g., 1, 2)
- edges departing from the same vertex have different labels (deterministic trees).



Reducible trees

Definition (MSO logic)

Given a tree $T = (V, (E_a)_{a \in A}, (P_c)_{c \in C})$, MSO-formulas over T are defined as follows:

- node variables x, y, z, ... denote single elements in V
- set variables X, Y, Z, ... denote subsets of V
- atomic formulas have one of the following forms:
 - $E_a(x, y)$ meaning '(x, y) denotes an a-labeled edge'
 - P_c(x) meaning 'x denotes a c-colored vertex'
 - X(y) meaning 'y denotes a vertex in the set X'
- more complex formulas are build up via
 - $\bullet\,$ the Boolean connectives $\,\wedge\,,\,\vee\,,\neg$
 - quantifications $\exists x, \forall x \text{ over node variables}$
 - quantifications $\exists X, \forall X \text{ over set variables}$

Introduction 00000000	The contraction method	Reducible trees	Conclusions
MSO logic			
Example 1			
The reflexi	ive and transitive closure B	E* of a	

successor relation E is definable in MSO logic:

$$E^*(x,y) := \forall X. X(x) \land \forall z, w. (X(z) \land E(z,w) \rightarrow X(w)) \rightarrow X(y)$$

	luction	The contraction method	Reducible trees	Conclusions
MSO	logic			
	Example 1			
		and transitive closure E* of ion E is definable in MSO		
	$E^*(x,y) := \forall$	$X. X(x) \land \forall z, w. (X(z) \land$	$E(z,w) \rightarrow X(w)) \rightarrow X$	(y)
	Example 2			

$$\forall x, y. \exists z. E^*(z, x) \land E^*(z, y)$$

'Any two vertices have a common ancestor'

is translated into

	luction	The contraction method	Reducible trees 0000000	Conclusions
MSO	logic			
	Example 1			
		and transitive closure E* of ion E is definable in MSO	-	
	$E^*(x,y) := \forall$	$X. X(x) \land \forall z, w. (X(z) \land$	$E(z,w) \to X(w)) \to X$	(y)

Example 2

'Any two vertices have a common ancestor' is translated into

$$\forall x, y. \exists z. E^*(z, x) \land E^*(z, y)$$

Example 3

'One can always reach a bad vertex from a good one' is translated into

 $\forall x. P_{good}(x) \rightarrow \exists y. P_{bad}(y) \land E^*(x,y)$

Introduction	The contraction method	Reducible trees	Conclusions
00000000			
Model-checking problem			

Note that we can get rid of node variables x, y, z, ... by simulating them via set (singleton) variables X, Y, Z, ...

Given a tree T with vertices colored over $\{c_1, ..., c_n\}$, we are interested in solving the following problem, denoted **MTh**_T:

Definition (model-checking problem)

Input: a formula φ with free set variables $X_1, ..., X_n$

Problem: to decide whether φ holds in T (shortly, $T \vDash \varphi$) by interpreting each variable X_i with the set of c_i -colored vertices.

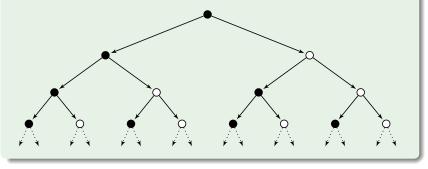
000000000 Model-checking problem	00000	000000	
Introduction	The contraction method	Reducible trees	Conclusions

Example

Check whether the formula

$$\varphi(X) = X(root) \land \forall x, y. (E_{left}(x, y) \rightarrow X(y))$$

holds in the following tree by interpreting X with the set of *black-colored vertices*:



The contraction method 00000 Reducible trees

The automaton-based approach

We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C-colored trees is a tuple $\mathcal{A} = (Q, \Delta, \mathcal{I}, \{p_1, ..., p_k\})$, where

- Q is a finite set of states
- $\Delta \subseteq Q \times C \times Q^A$ is a transition relation
- $\mathcal{I} \subseteq Q$ is a set of initial states
- each p_i is an accepting pair $(Good_i, Bad_i)$, with $Good_i, Bad_i \subseteq Q$.

The contraction method 00000

Reducible trees

The automaton-based approach

We solve the model-checking problem by means of automata ...

Definition (Rabin tree automaton)

A Rabin tree automaton running on A-labeled C-colored trees is a tuple $\mathcal{A} = (Q, \Delta, \mathcal{I}, \{p_1, ..., p_k\})$, where

- Q is a finite set of states
- $\Delta \subseteq Q \times C \times Q^A$ is a transition relation
- $\mathcal{I} \subseteq Q$ is a set of initial states
- each p_i is an accepting pair $(Good_i, Bad_i)$, with $Good_i, Bad_i \subseteq Q$.

... But, how does a Rabin tree automaton *run* on a tree?

	The contraction method	Reducible trees	Conclusions
The automaton-based ap	proach		
First, the	automaton A non-determi	nistically	

generates a **computation** on the input tree T:

- it marks the root of T with any arbitrary state
- it marks the successors of each vertex of *T* on the basis of the current color and the transition relation Δ.

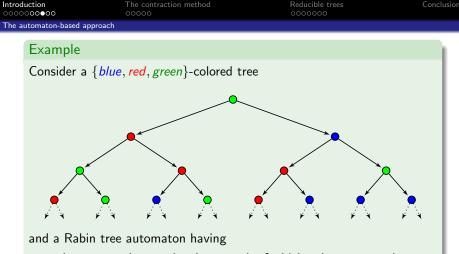
Introduction 0000000000	The contraction method	OOOOOOOO	Conclusions
The automaton-based	approach		
First, the	e automaton ${\mathcal A}$ non-determi	nistically	

generates a **computation** on the input tree T:

- it marks the root of T with any arbitrary state
- it marks the successors of each vertex of *T* on the basis of the current color and the transition relation Δ.

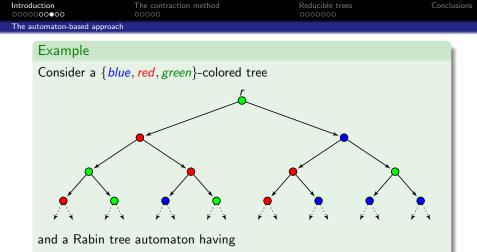
Then, it checks whether the computation is **successful**:

- the state at the root should be an *initial state*
- for every infinite path π, there should be a pair p_i = (Good_i, Bad_i) such that
 (i) at least one state in Good_i occurs infinitely often in π
 (ii) every state in Bad_i occurs only finitely often in π.



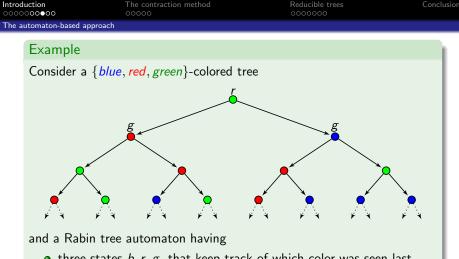
• three states b, r, g, that keep track of which color was seen last

• transitions $\begin{pmatrix} b, blue, b, b \end{pmatrix}$ (r, blue, b, b) (g, blue, b, b)(b, red, r, r) (r, red, r, r) (g, red, r, r)(b, green, g, g) (r, green, g, g) (g, green, g, g)

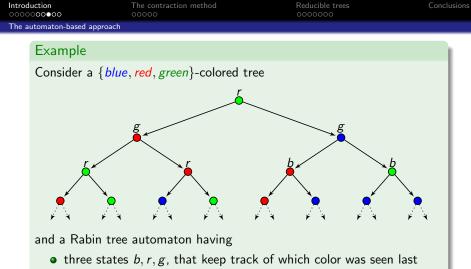


• three states b, r, g, that keep track of which color was seen last

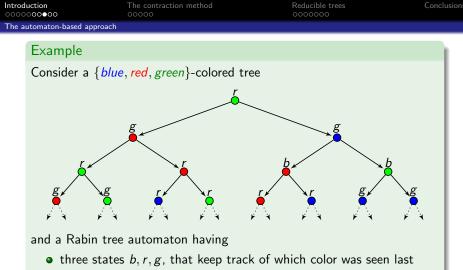
• transitions $\begin{pmatrix} b, blue, b, b \end{pmatrix}$ (r, blue, b, b) (g, blue, b, b)(b, red, r, r) (r, red, r, r) (g, red, r, r)(b, green, g, g) (r, green, g, g) (g, green, g, g)



- three states b, r, g, that keep track of which color was seen last
- transitions $\begin{pmatrix} b, blue, b, b \end{pmatrix}$ (r, blue, b, b) (g, blue, b, b)(b, red, r, r) (r, red, r, r) (g, red, r, r)(b, green, g, g) (r, green, g, g) (g, green, g, g)
- a single accepting pair p₁ = (Good₁, Red₁), with Good₁ = {b} and Red₁ = {r}



• transitions
$$\begin{pmatrix} b, blue, b, b \end{pmatrix}$$
 $(r, blue, b, b)$ $(g, blue, b, b)$
 (b, red, r, r) (r, red, r, r) (g, red, r, r)
 $(b, green, g, g)$ $(r, green, g, g)$ $(g, green, g, g)$



• transitions $\begin{pmatrix} b, blue, b, b \end{pmatrix}$ (r, blue, b, b) (g, blue, b, b)(b, red, r, r) (r, red, r, r) (g, red, r, r)(b, green, g, g) (r, green, g, g) (g, green, g, g)

Introduction ○○○○○○○○○	The contraction method	Reducible trees	Conclusions	
The automaton-based approach				

Theorem (Rabin 1969)

Given any MSO-formula φ with free variables $X_1, ..., X_n$, one can compute a Rabin tree automaton \mathcal{A} such that for every tree T with vertices colored over $\{c_1, ..., c_n\}$

 φ holds in T iff \mathcal{A} accepts T

Introduction 0000000000	The contraction n	nethod	Reducible trees	Co	onclusions
The automaton-based ap	proach				
Theorem (Rabin 1969)				
<i>C</i> :		1.1.6		X	

Given any MSO-formula φ with free variables $X_1, ..., X_n$, one can compute a Rabin tree automaton \mathcal{A} such that for every tree T with vertices colored over $\{c_1, ..., c_n\}$

 φ holds in T iff \mathcal{A} accepts T

 $\Rightarrow \text{ Given a tree } T, \text{ the following problem,} \\ \text{denoted } \mathbf{Acc}_T, \text{ becomes crucial:} \end{cases}$

Definition (acceptance problem)

Input: a Rabin tree automaton \mathcal{A}

Problem: to decide whether \mathcal{A} accepts \mathcal{T} (shortly, $\mathcal{T} \in \mathscr{L}(\mathcal{A})$).

Introduction	The contraction method	Reducible trees	Conclusions
The automaton-based approach			

Proposition

The acceptance problem of any regular tree T is decidable.

Reducible trees

The automaton-based approach

Proposition

The acceptance problem of any regular tree T is decidable.

Proof sketch

- a regular tree T is bisimilar to a *finite graph*
- use this graph to produce a Rabin tree automaton \mathcal{B} such that $\mathscr{L}(\mathcal{B}) = \{T\}$, namely, \mathcal{B} accepts only T
- given any Rabin tree automaton A, test whether L(A) ∩ L(B) is non-empty.

Reducible trees

The automaton-based approach

Proposition

The acceptance problem of any regular tree T is decidable.

Proof sketch

- a regular tree T is bisimilar to a *finite graph*
- use this graph to produce a Rabin tree automaton \mathcal{B} such that $\mathscr{L}(\mathcal{B}) = \{T\}$, namely, \mathcal{B} accepts only T
- given any Rabin tree automaton A, test whether L(A) ∩ L(B) is non-empty.

Problem

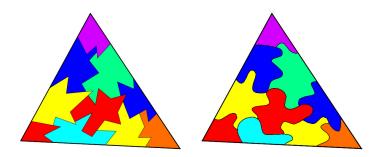
What about non-regular trees?

The contraction method ●○○○○ Reducible trees

Conclusions

Basic idea

An automaton \mathcal{A} can only **distinguish** between finitely many trees!



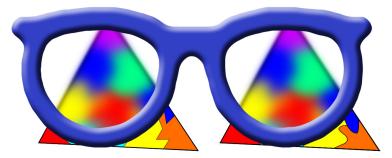
The contraction method

Reducible trees

Conclusions

Basic idea

An automaton \mathcal{A} can only **distinguish** between finitely many trees!



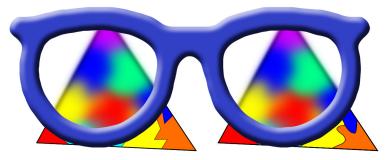
The contraction method

Reducible trees

Conclusions

Basic idea

An automaton \mathcal{A} can only **distinguish** between finitely many trees!



- $\Rightarrow \text{ This allows us to introduce an} \\ equivalence relation \equiv_{\mathcal{A}} \text{ such that} \\ \end{cases}$
 - $\equiv_{\mathcal{A}}$ has finite index
 - if $T_1 \equiv_{\mathcal{A}} T_2$, then \mathcal{A} generates similar computations on T_1 and T_2 .

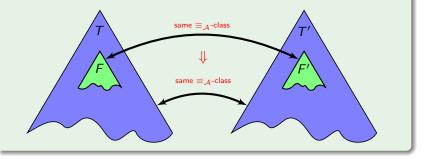
Introduction	The contraction method	Reducible trees	Conclusions
	0000		
Tree substitutions			

Proposition

The equivalence relation $\equiv_{\mathcal{A}}$ is compatible with tree substitutions.

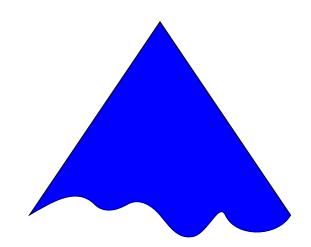
Intuitive explanation

Consider a tree T and a **factor** F inside it. Take F' such that $F' \equiv_{\mathcal{A}} F$ and let T' := T[[F/F']]. Then $T' \equiv_{\mathcal{A}} T$.

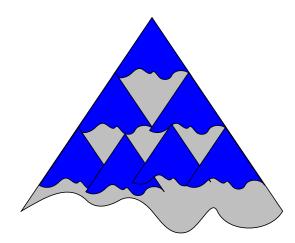


Introduction	The contraction method	Reducible trees	Conclusions
	00000		
Contractions			

 \Rightarrow We can replace any portion of a tree **T** with its $\equiv_{\mathcal{A}}$ -class ...

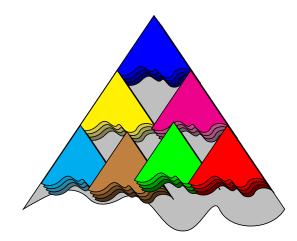


- \Rightarrow We can replace any portion of a tree **T** with its $\equiv_{\mathcal{A}}$ -class ...
 - **(**) we decompose T into factors

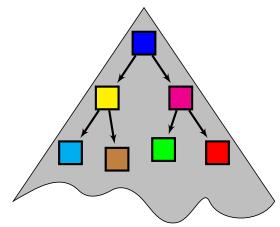


Introduction 000000000	The contraction method	Reducible trees	Conclusions
Contractions			

- \Rightarrow We can replace any portion of a tree T with its $\equiv_{\mathcal{A}}$ -class ...
 - we decompose **T** into **factors**
 - We associate to each factor its equivalence class w.r.t. ≡_A (these classes can be thought of as colors!)



- We associate to each factor its equivalence class w.r.t. ≡_A (these classes can be thought of as colors!)
- **③** we reason on the abstracted tree $\vec{\tau}$, called \mathcal{A} -contraction.



Introduction	The contraction method	Reducible trees	Conclusions
	00000		
Main result			

Theorem (Main result)

Given an automaton \mathcal{A} , a tree T, and its \mathcal{A} -contraction \vec{T} one can build an automaton $\vec{\mathcal{A}}$ such that

$$\vec{\tau} \in \mathscr{L}(\vec{A})$$
 iff $T \in \mathscr{L}(\mathcal{A})$.

Reducible trees

Main result

Theorem (Main result)

Given an automaton \mathcal{A} , a tree T, and its \mathcal{A} -contraction \overrightarrow{T} one can build an automaton $\overrightarrow{\mathcal{A}}$ such that

$$\vec{\mathcal{T}} \in \mathscr{L}(\vec{\mathcal{A}}) \qquad iff \qquad \mathcal{T} \in \mathscr{L}(\mathcal{A}).$$

Proof idea

Define $\vec{\mathcal{A}}$ in such a way that it *mimics* the computations of \mathcal{A} on \mathcal{T} at a "coarser level":

- the input alphabet of $\vec{\mathcal{A}}$ is the set of all $\equiv_{\mathcal{A}}$ -classes
- the states of $\vec{\mathcal{A}}$ encode the finite amount of information processed by \mathcal{A} up to a certain point,
- the transitions of *A* compute new states by "merging" the information of the current state with the information provided by the input symbol (i.e., the ≡_A-class of the current factor).

Introduction	The contraction method	Reducible trees	Conclusions
000000000	0000	0000000	
Main result			

Corollary

If a tree T has a regular A-contraction \vec{T} , then one can decide whether $T \in \mathscr{L}(A)$.

Introduction	The contraction method	Reducible trees	Conclusions
	0000		
Main result			

Corollary

If a tree T has a regular A-contraction \overline{T} , then one can decide whether $T \in \mathscr{L}(A)$.

... We can also iterate contractions on a tree T in oder to decide whether $T \in \mathscr{L}(\mathcal{A})$!

Example

If T has an \mathcal{A} -contraction \overrightarrow{T} and \overrightarrow{T} has a *regular* $\overrightarrow{\mathcal{A}}$ -contraction \overrightarrow{T} then we can decide if $\overrightarrow{T} \in \mathscr{L}(\overrightarrow{\mathcal{A}})$, $\overrightarrow{T} \in \mathscr{L}(\overrightarrow{\mathcal{A}})$, and $T \in \mathscr{L}(\mathcal{A})$.

Corollary

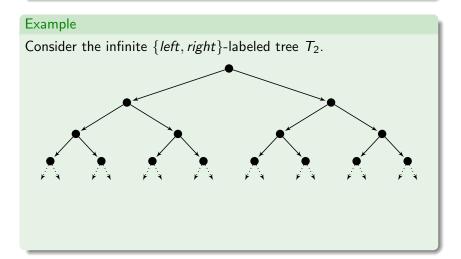
The acceptance problem (and hence the model-checking problem) of any reducible tree is decidable.

Introduction 000000000 The contraction method

Reducible trees

Closure properties

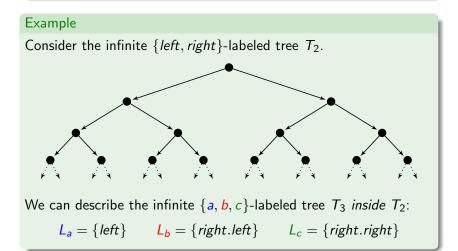
Theorem



Reducible trees

Closure properties

Theorem

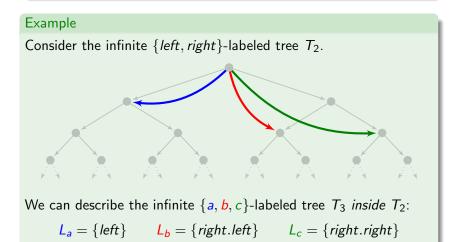


The contraction method 00000

Reducible trees

Closure properties

Theorem

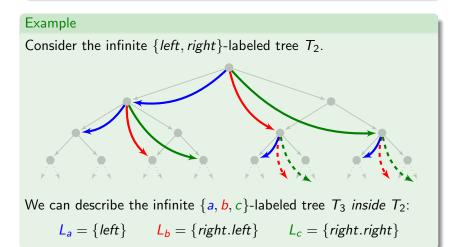


The contraction method 00000

Reducible trees

Closure properties

Theorem

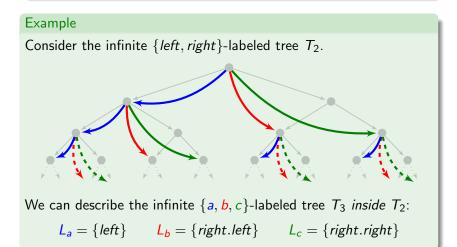


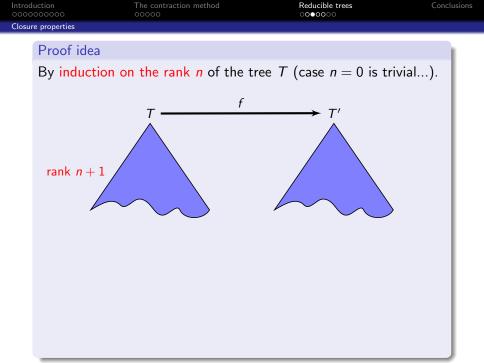
The contraction method 00000

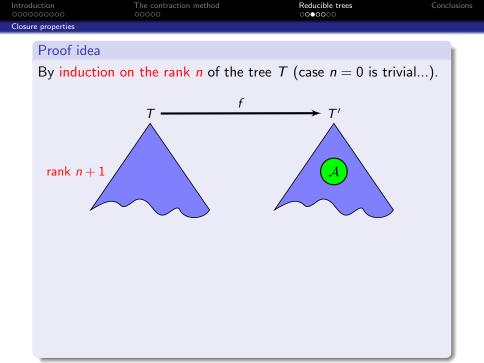
Reducible trees

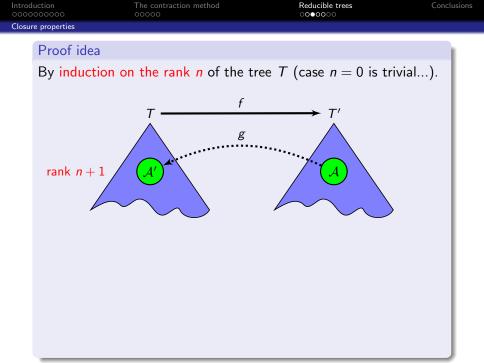
Closure properties

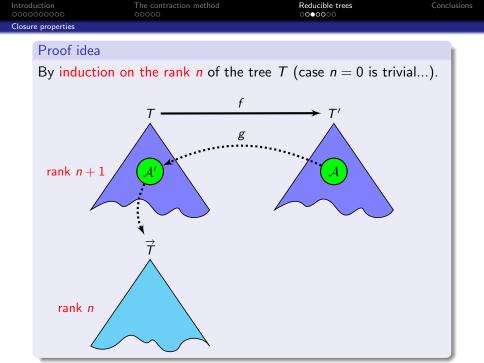
Theorem

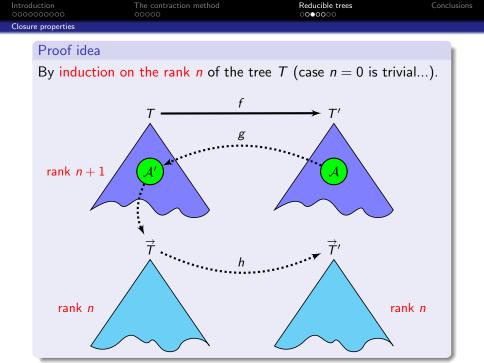


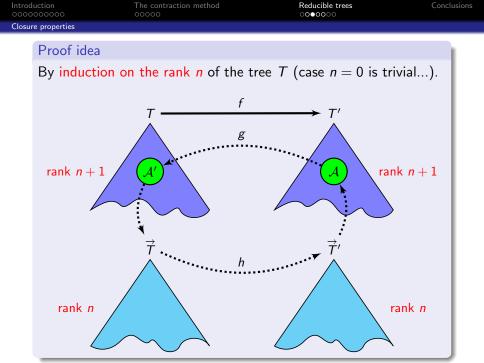












Reducible trees

Closure properties

Theorem

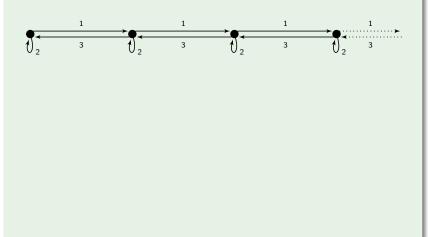
The class of reducible trees is closed under the operation of unfolding with backward edges and loops *FlipUnfolding*.

More precisely, for every $n \in \mathbb{N}$, if *T* is a rank *n* tree, then \mathcal{F} lip \mathcal{U} nfolding(*T*) is a rank n + 1 tree.

	uction 000000	The contraction method	Reducible trees ○000●00	Conclu	
Closu	re properties				
	Proof by exam	ple			
			miinfinite line L (a rank (Unfolding(L) is a rank 1 tr	· · ·	

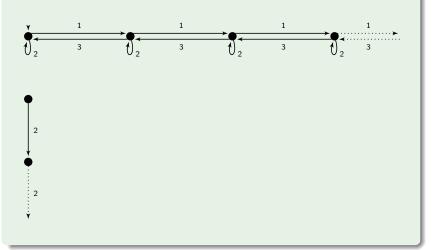
Introduction 000000000	The contraction method	Reducible trees ○000●○○	Conclusions
Closure properties			
Proof by	vample		

As a simple case, consider the **semiinfinite line** L (a rank 0 tree). We have to show that $T = \mathcal{F}lip\mathcal{U}nfolding(L)$ is a rank 1 tree.



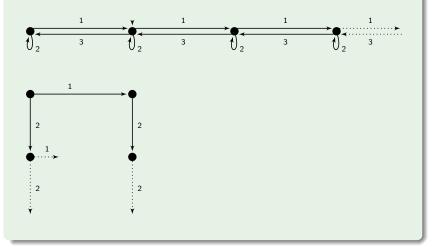
Introduction 000000000	The contraction method	Reducible trees ○000●○○	Conclusions
Closure properties			
Proof by e	example		

As a simple case, consider the **semiinfinite line** L (a rank 0 tree). We have to show that $T = \mathcal{F}lip\mathcal{U}nfolding(L)$ is a rank 1 tree.

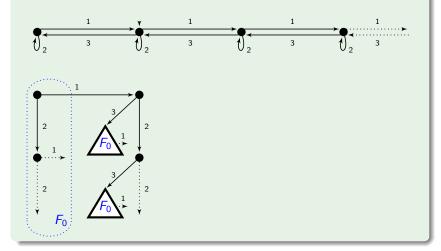


	luction 000000	The contraction method	Reducible trees	Conclusions
Closu	re properties			
	Proof by exam	ple		

As a simple case, consider the **semiinfinite line** L (a rank 0 tree). We have to show that $T = \mathcal{F}lip\mathcal{U}nfolding(L)$ is a rank 1 tree.

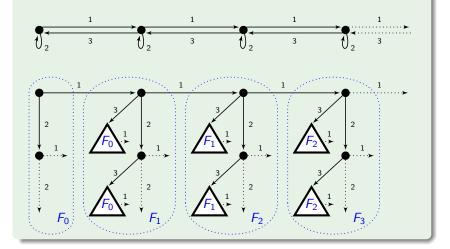


We have to show that $T = \mathcal{F}lip\mathcal{U}nfolding(L)$ is a rank 1 tree.



	uction 000000	The contraction method	Reducible trees	Conclusions	
Closu	e properties				
	Proof by exam	ple			
	As a simple cas	se, consider the semii	infinite line L (a rank	0 tree).	

We have to show that $T = \mathcal{F}lip\mathcal{U}nfolding(L)$ is a rank 1 tree.



Introduction 0000000000 The contraction method 00000

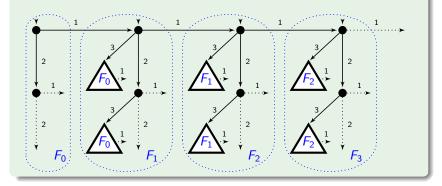
Reducible trees ○000●00

Closure properties

Proof by example

Every factor is obtained from its predecessor via a substitution:

$$F_{n+1} = \mathcal{U}nfolding\left(\bigotimes_{3} \xrightarrow{1} \xrightarrow{1} \operatorname{next}\right) \left[\!\!\left[x/F_{n} \right]\!\!\right].$$



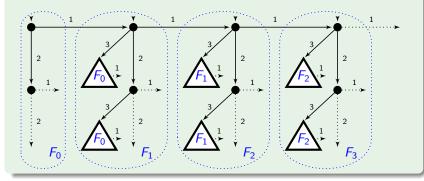
Reducible trees ○○○○●○○

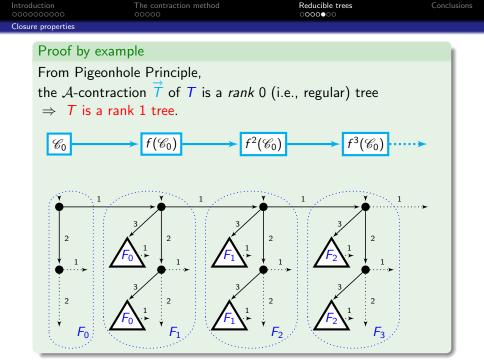
Closure properties

Proof by example

Since $\equiv_{\mathcal{A}}$ is a *congruence* with respect to substitutions, the sequence of the $\equiv_{\mathcal{A}}$ -classes $\mathscr{C}_0, \mathscr{C}_1, \mathscr{C}_2, ...$ of factors $F_0, F_1, F_2, ...$ can be recursively characterized as follows:

$$\begin{cases} \mathscr{C}_{0} = [F_{0}]_{\equiv_{\mathcal{A}}} \\ \mathscr{C}_{n+1} = f(\mathscr{C}_{n}) \end{cases} \text{ (for a suitable function } f)$$





Introduction 000000000	The contraction method	Reducible trees ○○○○○●○	Conclusions
Caucal hierarchy			

Theorem

All deterministic trees of the **Caucal hierarchy** can be obtained from regular trees via inverse forward rational mappings and unfoldings with backward edges and loops.

$$Caucal_0 = \{T : T \text{ deterministic regular tree}\}$$

 $Caucal_{n+1} = \left\{ f(\mathcal{F}lip\mathcal{U}nfolding(T)) : \begin{array}{l} T \in Caucal_n, \\ f \text{ inverse forward mapping} \end{array} \right\}$

Introduction 000000000	The contraction method	Reducible trees ○○○○○●○	Conclusions
Caucal hierarchy			

Theorem

All deterministic trees of the **Caucal hierarchy** can be obtained from regular trees via inverse forward rational mappings and unfoldings with backward edges and loops.

$$Caucal_0 = \{T : T \text{ deterministic regular tree}\}$$

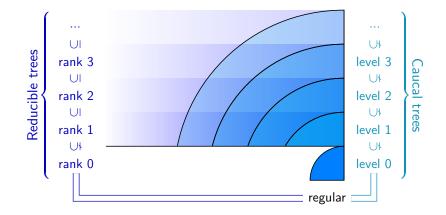
 $Caucal_{n+1} = \left\{ f(\mathcal{F}lip\mathcal{U}nfolding(T)) : \begin{array}{l} T \in Caucal_n, \\ f \text{ inverse forward mapping} \end{array} \right\}$

Corollary

The reducible trees include all deterministic trees of the Caucal hierarchy: $\operatorname{Rank}_n \supseteq \operatorname{Caucal}_n$ for all $n \in \mathbb{N}$.

Introduction 000000000	The contraction method	Reducible trees	Conclusions
Caucal biorarchy			

Actually, the inclusion is proper for each level:



Introduction

Other results

- Characterization of languages recognized by two-way alternating tree automata
- Decidability of MSO theories of morphic trees

Introduction

Reducible trees

Other results

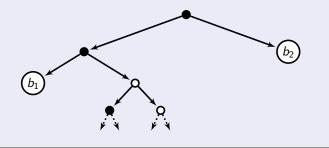
- Characterization of languages recognized by two-way alternating tree automata
- Decidability of MSO theories of morphic trees

Open problems

- To establish whether the hierarchy of reducible trees is *strictly increasing* or not
- To capture trees generated by higher-order recursive program schemes
- To generalize the approach towards *colored graphs*.

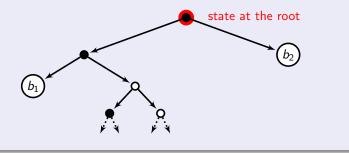
The $\equiv_{\mathcal{A}}$ -class of a (marked) tree *T* is represented by a *set of triples* of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$



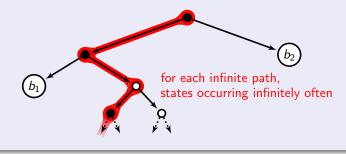
The $\equiv_{\mathcal{A}}$ -class of a (marked) tree *T* is represented by a *set of triples* of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$



The $\equiv_{\mathcal{A}}$ -class of a (marked) tree *T* is represented by a *set of triples* of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$



The $\equiv_{\mathcal{A}}$ -class of a (marked) tree *T* is represented by a *set of triples* of the form

$$\begin{pmatrix} R(\texttt{root}) \\ \{ Inf \mathcal{O}cc(R|\pi) : \pi \text{ branch of } F \} \\ \{ (F(w), R(w), \mathcal{O}cc(R|w)) : w \text{ leaf of } F \} \end{pmatrix}$$

